Stability of Ligand Free Tin-Gold Clusters

K. A. GINGERICH, D. L. COCKE and U. V. CHOUDARY Department of Chemistry, Texas A&M University, College Station, Texas 77843, U.S.A. (Received June 17, 1975)

The investigation of metal atom cluster complex compounds has been quite intensive over the last decade.¹ Since recently theoretical interest in ligand free transition metal clusters has been increasing, because such clusters are thought to play a role as active centers in catalysts.²⁻⁴ The only polyatomic intermetallic molecules containing transition metal atoms for which atomization energies have been measured, are triatomic.⁵ Here we report the first measured bond energies for intermetallic ligand free transition metal containing molecules with more than 3 atoms. The system tin–gold was chosen for the investigation of such intermetallic clusters, since tin is known to form polyatomic molecules of high stability.⁶

We could identify the intermetallic molecules SnAu, Sn_2Au , $SnAu_2$, Sn_2Au_2 and Sn_3Au and the tin molecules Sn_2 to Sn_6 with a mass spectrometer, over a tin-rich Sn-Au alloy contained in a graphite Knudsen cell. The principles of the method and the experimental procedure have been described elsewhere.⁷

The pressure independent reactions studied, involving tin-gold molecules, are listed in Table 1 together with the corresponding third law enthalpy changes, ΔH°_{o} , free energy function changes, $-\Delta[(G_{1600}^{\circ} - H_{o}^{\circ})/T]$ and the number of data sets measured. The temperature range covered was from 1400 to 1900 K. The derived atomization energies, $\Delta H_{atm,0}^{\circ}(M)$, for the molecules studied, together with the assumed molecular geometries are also given. For SnAu a $^{2}\pi$ ground state and for the other molecules a $^{1}\Sigma$ ground state were assumed. The dissociation energy of the tin dimer, $D_{o}^{\circ}(Sn_{2}) =$ 189.1 ± 6kJ mol⁻¹, needed for the calculation of $D_{o}^{\circ}(SnAu)$, was also determined. Additional possible geometries chosen for the molecules $Sn_{3}Au$ and $Sn_{2}Au_{2}$ yielded similar atomization energies.

For all polyatomic intermetallic tin-gold molecules the measured atomization energies are markedly larger than would be expected from the simple bond additivity rule for chain molecules using the values for $D_0^{\circ}(Sn_2)$ and $D_0^{\circ}(SnAu)$. This is a strong indication that cluster molecules with their larger number of bonds are preferred over chain formation

Acknowledgement

The support by the Robert A. Welch Foundation is gratefully acknowledged.

References

- See F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., Interscience, New York, 1972, Chps. 19, 22, 25, 26 and references therein.
- 2 R. C. Baetzold, J. Chem. Phys., 35, 4369 (1971); J. Catal., 29, 129 (1973).
- 3 J. C. Slater and K. H. Johnson, *Physics Today*, Oct. 1974, pp. 34 41.
- 4 J. H. Sinfelt, J. Catal., 29, 308 (1973).

TABLE I. Third-law Reaction Enthalpies and Derived Atomization Energies of Tin-Gold Molecules.

Gas Phase Reaction	No. of Data Sets	$\Delta [(G^{\circ}_{1600} - H^{\circ}_{o})/T]$ (J K ⁻¹)	ΔH°° ^a (kJ)	∆H ⁰ atm,₀(M) ^b (kJ mol ⁻¹)	Molecule (M)	Assumed Geometry
$SnAu + Sn = Sn_2 + Au$	19	-11.13	62.3 ± 0.8	251 ± 8	SnAu	
$Sn_{2}Au + Au = 2 SnAu$	7	32.51	-16.7 ± 0.8	486 ± 18	Sn, Au	Cs
$SnAu_2 + Sn = 2 SnAu$	6	40.00	39.3 ± 2.5	542 ± 18	SnAu ₂	C _{2V}
$\operatorname{Sn}_2\operatorname{Au}_2$ + Au = SnAu_2 + SnAu	2	74.94	77.0 ± 2.1	871 ± 25	Sn, Au,	D∞h
	_	61.55	54.4	848 ± 25		C _{2V}
$\operatorname{Sn}_{3}\operatorname{Au} + 2\operatorname{Au} = 3\operatorname{Sn}\operatorname{Au}$	5	90.96	29.7 ± 2.5	786 ± 25	Sn, Au	D∞h
	-	80.92	16.3	767 ± 25	-	C _s

^a The error terms correspond to standard deviations or deviation from the mean.

^b The error term gives the estimated overall error.

- 5 K. A. Gingerich, *Chem. Phys. Letters*, 13, 262 (1972);
 K. A. Gingerich, D. L. Cocke, H. C. Finkbeiner and
 C.-A. Chang, *ibid.*, 18, 102 (1973); D. L. Cocke and
 K. A. Gingerich, *J. Chem. Phys.*, 60, 1968 (1974);
 J. Kordis, K. A. Gingerich and R. J. Seyse, *ibid.*, 61, 5114 (1974).
- 6 R. E. Honig, J. Chem. Phys., 21, 573 (1953);
- K. A. Gingerich, A. Desideri and D. L. Cocke, *ibid.*, 62, 731 (1975).
- 7 J. Drowart and P. Goldfinger, Angew. Chem., 79, 589 (1967); D. L. Cocke and K. A. Gingerich, J. Phys. Chem. 75, 3264 (1971).